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Abstract

There are two rules of thumb in determining the number of significant figures in a
calculated. When multiplying or division several quantities, the numbers of significant
figures in the final answer is the same as the number of significant figures in the least
accurate of the quantities entering the calculation. When numbers are added or
subtracted, the last significant figure is in the same column as the last significant
figure in the last accurate number. Furthermore, exercising the rules to propagate
significant figures of a mean value might still have problems. Other than those rules,
the standard error of mean was treated as the gold standard to propagate significant
figures of the mean value. However, this article reviews the definition of the standard
error of mean in statistics and finds that maybe the common expression causes the
misunderstanding.
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Resumen

Hay dos reglas para determinar el número de cifras significativas en un cálculo. Al
multiplicar o dividir varios números, el número de cifras significativas en la respuesta
final es el mismo que el número de cifras significativas en la menos precisa que entra
en cómputo. Cuando los números son sumados o restados, la última cifra significativa
está en la misma columna que la última cifra en el número menos preciso. Además, en
las reglas existentes que propagan las cifras significativas de un valor medio se tienen
aun problemas. En otras reglas se ha tratado el error estándar de la media, como
estándar dorado en la propagación de las cifras significativas del valor de la media.
En este artículo se revisa la definición del error estándar de la media en estadística y
se muestra que tal vez la expresión habitual de este error es la causa de la interpretación
inadecuada.

Palabras clave: cifras significativas, valor medio, error estándar de la media.

INTRODUCTION
When certain quantities are measured, the measured values are known

only to with the limits of the experimental uncertainty. The value of the
uncertainty depends on various factors, such as the quality of the appara-
tus, the skill of the experimenter, and the number of measurements per-
formed. There is no such thing as an exact measurement. An approximate
method to keep track of the accuracy of numbers is to write only those
figures that are significant. The last digit in a number is considered to have
some significance, but it may not be exact.

According to the method of significant figures, a calculated number,
involving measured quantities, should have a limited number of significant
figures. Even if a pocket calculator gives an answer to nine digits, not all of
them are necessarily significant since the numbers that went into the calcu-
lation had limited accuracy. So the calculated number has uncertainty. There
are two good rules of thumb (SCHWART LOWELL 1985, SERWAY 1998) in
determining the number of significant figures in a calculated. When multi-
plying or division several quantities, the numbers of significant figures in
the final answer is the same as the number of significant figures in the least
accurate of the quantities entering the calculation. When numbers are added
or subtracted, the last significant figure is in the same column as the last
significant figure in the last accurate number.

Regarding the issue of significant figures in calculations, almost two
decades ago, professor SCHWARTZ from University of Massachusetts wrote
an interesting article with the title of ‘propagation of significant figures’
(SCHWART LOWELL 1985). Schwartz’s article drew our attention to the fact
that the se two conventional rules of thumb for propagating significant
figures might have problems. However, others seem not to follow with
Professor Schwartz’s effort – and we also take this review. The very
recently published textbooks including physics (URONE 2001, CUTNELL,
JOHNSON 1998, EUGENE 2000) and chemistry (JONES 2000, MARTIN 2000,

MARTIN 2000) still cite these conventional rules for propagating significant
figures.

The issue of significant figure was also debated in my physics class.
The test problem listed a group of eight measurements (1.28, 1.27, 1.28,
1.28, 1.28, 1.27, 1.28 and 1.27 seconds) and asked to calculate the mean
value. A group of students comes out with the answer for the mean value
of eight measurements was 1.276 (seconds), which had one more deci-
mals place than those of the testing data. The supporting comment lied in
that the ‘true’ value must be somewhere between 1.27 and 1.28 thus giving
increased confidence that the mean value is 1.27 and a bit. However, some
students would hold to the opposite view that the last digit of experimental
data has some uncertainty in its value. For example, the result of a mea-
surement may be 1.28 second with an uncertainty of 1%. Since 1% of 1.28
is approximately 0.01, the result is 1.28±0.01 second. The true value is
likely lie between 1.27 and 1.29 second. Instead of an explicit statement of
uncertainty, the number of digits retained often indicates the precision of a
result. The value of 1.28 has three significant figures, with the understand-
ing that the last figure may not be certain. Moreover, the above-mentioned
problem did not specify the uncertainty. Therefore, according to the method
of the significant figure, to add another decimal on the mean value is
nothing but to increase the implied accuracy of experiment just simply by
mathematical manipulation.

To access the debate, several rules for propagating significant figures
have been proposed (SCHWART LOWELL 1985) for the calculation of mean
value. Among these propagation procedures, the standard error of the
mean seems to be treated as the gold standard, as indicated by Professor
SCHWARTZ “…later calculated the standard error of the mean as 0.012g.
This confirmed that the statistical uncertainty of the mean as expressed as
the standard error estimate was within the hundredths decimal place”,
PARRATT (PARRATT 1961) also pointed out that “as a guide in determining
the proper number of significant figures with which to express the preci-
sion of a mean determined from seven or more equally weighted measure-
ment, the mean should have one more significant figure than has each
measurement. In general, justification for the rule, and indeed the proper
number of significant figures for the mean in any case, is indicated by the
magnitude of, say, the standard deviation or, better, of the standard devia-
tion in the mean”. If the standard error of the mean or the standard devia-
tion in the mean is the best way to propagate significant figures, how come
Professor SCHWARTZ (SCHWART LOWELL 1985) summarized that “…hope
this paper will stimulated others to offer contribution toward these un-
solved problems”? Therefore, the more detail discussion of the standard
error of the mean will be presented in this article.

THE STANDARD ERROR OF THE MEAN
In statistics, samples are usually drawn from much larger populations;

and data are collected about the sample to find out something about the
population. Furthermore, the probability theory enables the usage of the
samples to estimate quantities in populations, and to determine the preci-
sion of these estimates. Using a suitable random sampling method, the
sampling experiment draws repeated samples from the population. The
reiterating procedures give these sampling data as well as their means.

Usually, these sample means are not all the same and would form a
distribution. The distribution of all possible sample means is called the
sampling distribution of the mean. In general, the sampling distribution of
any statistic is the distribution of the value of the statistic arising from all
possible samples. The sample mean is an estimate of the population mean.
The standard deviation of its sampling distribution is called the standard
error of the estimate, which provides a measure of how far from the true
value the estimate is likely to be. In almost all practical situations, we do not
know the true value of the population variance but only its estimate. There-
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fore, use the formula s/n to estimate the standard error (BLAND MARTIN,
2000), where s and n are the standard deviation and size of the sample. The
estimate is referred to as the standard error of the mean.

The mean and standard error are often written as mean ± standard
error. However, as pointed out by BLAND (BLAND  MARTIN, 2000), the
common expression would be rather misleading in that the true value
may be up to two standard errors from the mean with reasonable prob-
ability. The standard error is often confused with the standard deviation
(DAWSON at all 2000). The standard deviation is concerned with the
variability of samples, but the standard error is used to measure the
precision of estimates. Furthermore, the population mean is estimated to
lie somewhere in the interval between these limits, which is called confi-
dence interval in statistics. In the language of statistics mean ± 1.96
standard error, there is 95% confident that the mean lies between the ±
1.96 standard error limits.

CONCLUSIONS
From the above discussion, the expression of mean ± standard error is

far from the definition of the measurement ± uncertainty (URONE 2001).
The standard error of mean should not be treated as the uncertainty, even
though they are frequently expressed in the same format. According to the
definition of standard error of mean to rewrite Professor Schwartz’s words,
it should be read as “…later calculated the standard error of the mean as
0.012g. There is 95% confidence that the mean lies between the 2.47 ±
0.0235g limits”.

The standard error of mean was treated as the gold standard to propa-
gate significant figures of the mean value (SCHWART LOWELL 1985, PARRATT

1961). However, this article reviews the definition of the standard error of
mean in statistics and finds that maybe the common expression causes the
misunderstanding (BLAND MARTIN, 2000). Moreover, the newly published
textbooks in physics and chemistry do not adopt the method of standard

error of mean dealing with the significant figure of the mean value.
Any mathematical manipulation, such as calculating the mean value for

a group of measurements, certainly could not increase accuracy of experi-
mental values, but it can increase the confidence that the true answer is
within a particular range. Therefore, propagating significant figures of the
mean value by the standard error of mean is not recommended since it is
difficult to apply appropriately.
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Abstract

A random sample of 750 out of 2954 Hungarian secondary school students (grade 7 to
11, aged 13-17) from 17 schools were participated in a paper-and-pencil test with free-
response problem on the composition of binary compounds. In this study the following
research questions were investigated: (1) whether Hungarian students – similar to the
German high school students – also created their own strategy in solving simple
stoichiometric problems, or they used the algorithmic methods learned at school, and
(2) how the students’ strategies changed during the education. We found that contrary
to German high school students, Hungarian secondary school students applied the
strategies learned at school (the mole method and the proportionality method) in
stoichiometric calculations. The success and the ratio of the mole method to the
proportionality method increased with the age of the students. Three possible interpre-
tations of the contradiction results are discussed.

Key words: stoichiometry, problem-solving strategies, composition of binary com-
pounds

Resumen

Una muestra aleatoria de 750 entre 2.954 estudiantes húngaros de la escuela (grado
de 7 a 11, y edad 13-17) participaron en una prueba de papel y lápiz con un problema
de respuesta libre sobre la composición de sustancias binarias. En este estudio se
investigaron las preguntas siguientes: (1) si los estudiantes húngaros son similares a
los estudiantes alemanes de escuela secundaria y pueden crear su propia estrategia
para resolver problemas simples de estequiometría, o usan los métodos algorítmicos
aprendidos en la escuela, y (2) cómo los estudiantes cambiaron las estrategias durante
la educación. Se encontró que al contrario de los estudiantes alemanes, los estudiantes
húngaros aplicaron las estrategias aprendidas en la escuela (los métodos de mol y de

reglas de tres) en los cálculos estequiométricos. Los logros y la proporción del método
de mol al método de reglas de tres aumentan con la edad de los estudiantes. Se discuten
tres posibles interpretaciones de los resultados contradictorios.

Palabras clave: estequiométria, estrategias para resolver problemas, composición de
sustancias binarias

INTRODUCTION
Research shows that the problem-solving strategy a student applies

depends on different factors. SCHMIDT (1994, 1997) reported that the high
school students in Germany successfully used their own strategy in solv-
ing simple stoichiometric problems, but tended to use algorithmic methods
in case of difficult problems. In balancing chemical equations we found
(TÓTH, 2004) that Hungarian high school students created their own bal-
ancing strategy (mainly the trial-and-error) before learning the oxidation
number method at school, and they stuck to their own strategies of low
efficiency even in case of complicated redox equations.

In this study we investigated the questions:
1. whether Hungarian students - similar to the German high school stu-

dents - also created their own strategy in solving simple stoichiometric
problems, or they used the algorithmic methods learned at school, and

2. how the students’ strategies changed during the education.
In this survey we used paper-and-pencil test with free-response prob-
lem on the composition of binary compounds similar to those developed
by SCHMIDT (1992, 1994, 1997):
‘How many grams of carbon are there in 96 g MgC

2
? Write down your

solution. A
r
(Mg) = 24; A

r
(C) = 12’

Hungarian secondary school students’ strategies in solving stoichiometric problems

Estrategias de estudiantes húngaros de escuela secundaria para resolver problemas
estequiométricos

ZOLTÁN TÓTH AND EDINA KISS

Team of Chemical Methodology, Faculty of Science, University of Debrecen, Debrecen, Hungary
o319tz@tigris.klte.hu


